Zaɓi Harshe

Binciken Kudin Karya na Cryptocurrency Gaba Daya: Nazari Akan Ethereum

Cikakken nazari kan kudin karya na cryptocurrency a kan Ethereum blockchain, gano 2,117 kudin karya da ke hari 94 sanannun cryptocurrencies da kuma kimanta asarar kudi fiye da $17M.
tokencurrency.net | PDF Size: 4.3 MB
Kima: 4.5/5
Kimarku
Kun riga kun ƙididdige wannan takarda
Murfin Takardar PDF - Binciken Kudin Karya na Cryptocurrency Gaba Daya: Nazari Akan Ethereum

Teburin Abubuwan Ciki

2,117

An Gano Kudin Karya

$17M+

Asarar Kudin

7,104

Wadanda Abin Ya Shafa

94/100

Sanannun Kudin Da Aka Kai Hari

1. Gabatarwa

Tun bayan fitowar Bitcoin a shekara ta 2009, cryptocurrencies sun sami girma mai yawa, tare da jimlar kasuwar su ta wuce dala biliyan 180 a karshen shekara ta 2019. Duk da haka, wannan saurin fadadawa ya jawo hankalin masu mugunta da ke neman amfani da tsarin. Duk da an yi nazari kan zamba daban-daban na cryptocurrency, ciki har da makircin Ponzi da hare-haren satar bayanai, kudin karya na cryptocurrency har yanzu barazana ce da ba a yi nazari sosai ba.

Wannan bincike ya gabatar da cikakken nazari na farko na kudin karya na cryptocurrency a kan blockchain na Ethereum. Ta hanyar nazarin sama da 190,000 kudin ERC-20, mun gano 2,117 kudin karya da ke kai hari 94 daga cikin 100 mafi shaharar cryptocurrencies. Bayanin mu na gaba-daya ya nuna ingantattun ayyukan zamba da ke haifar da babbar lalacewar kudi.

2. Hanyar Bincike

2.1 Tattara Bayanai

Mun tattara cikakkun bayanan blockchain daga babban hanyar sadarwa ta Ethereum, ciki har da duk ma'amaloli na kudin ERC-20, code ɗin kwangilar wayo, da metadata daga Nuwamba 2015 zuwa Disamba 2019. Bayanan mu sun ƙunshi:

  • Kwangilolin kudi na ERC-20 sama da 190,000
  • Ma'amaloli na canja wurin kudi sama da miliyan 450
  • Code ɗin tushe da bytecode na kwangilar wayo
  • Metadata na kudi ciki har da sunaye, alamomi, da goma-goma

2.2 Gano Kudin Karya

Mun ƙirƙira tsarin gano matakai daban-daban don gano kudin karya:

2.3 Rarraba Zamba

Nazarin mu ya bayyana manyan tsarin zamba guda biyu:

  • Makircin Hura da Zubarwa: Haɓaka farashin wucin gadi tare da siyarwa a haɗe
  • Zamba na Kwaikwayo: Kudin karya suna kwaikwayo ayyukan halatta don yaudarar masu saka hannun jari

3. Sakamakon Gwaji

3.1 Nazarin Tsarin Kasuwanci

Tsarin kudin karya ya nuna ingantaccen tsari tare da bayyanannun tashoshi na rarrabawa da dabarun talla. Mun gano:

  • Tsarukan ƙirƙira masu tattarawa tare da tattara lokaci
  • Haɓaka ta hanyar kafofin watsa labarun da dandamali
  • Ingantattun hanyoyin rarraba kudi

3.2 Tasirin Kudin

Nazarin mu na kudi ya nuna babbar lalacewar tattalin arziki:

  • Mafi ƙarancin asarar kudi: dala miliyan 17 (74,271.7 ETH)
  • Matsakaicin asara ga kowane wanda abin ya shafa: dala 2,392
  • Mafi girman zamba guda ɗaya: dala miliyan 4.2

3.3 Nazarin Wadanda Abin Ya Shafa

Mun gano 7,104 wadanda abin ya shafa na musamman a cikin zamba na kudin karya. Halayen wadanda abin ya shafa sun haɗa da:

  • Rarraba yanki a cikin kasashe 89
  • Matakan gogewa daban-daban na cryptocurrency
  • Tsarukan ɗabi'a gama gari a cikin samun kudi

Muhimman Hasashe

  • Kudin karya sun fi kai hari manyan cryptocurrencies masu girman kasuwa
  • Masu zamba suna amfani da ingantattun dabarun injiniyan zamantakewa
  • Matakan tsaro na yanzu ba su isa ba don yaki da barazanar karya
  • Nazarin sarƙaƙƙiya ya bayyana yaƙin neman zaɓe na zamba a haɗe

4. Aiwatar da Fasaha

4.1 Algorithm na Gano

Algorithm ɗin mu na gano kudin karya yana amfani da nazarin kama da kuma gane tsarin ɗabi'a:

4.2 Tsarin Lissafi

Mun tsara matsalar gano kudin karya ta amfani da ma'auni na kama da ka'idojin zane:

Ma'aunin Kama da Kudi:

$S(t_i, t_j) = \alpha \cdot S_{name}(t_i, t_j) + \beta \cdot S_{symbol}(t_i, t_j) + \gamma \cdot S_{behavior}(t_i, t_j)$

Inda $S_{name}$ ke lissafta kama da suna ta amfani da nisan Levenshtein, $S_{symbol}$ ke kimanta kama da alama, kuma $S_{behavior}$ yana nazarin tsarin ma'amala.

Lissafin Makin Zamba:

$ScamScore(t) = \sum_{i=1}^{n} w_i \cdot f_i(t)$

Inda $w_i$ ke wakiltar ma'auni na fasali kuma $f_i(t)$ yana wakiltar ƙimar fasali da aka daidaita ciki har da tsarukan ƙirƙira, rarraba masu riƙe, da ɗabi'un ma'amala.

4.3 Aiwarar da Code

Ga a simplified version na algorithm ɗin mu na gano kudin karya:

class CounterfeitDetector:
    def __init__(self, similarity_threshold=0.85):
        self.similarity_threshold = similarity_threshold
        
    def detect_counterfeit_tokens(self, token_list):
        """Main detection function for counterfeit tokens"""
        counterfeit_tokens = []
        
        for token in token_list:
            similarity_scores = self.calculate_similarity_scores(token, token_list)
            scam_score = self.compute_scam_score(token, similarity_scores)
            
            if scam_score > self.similarity_threshold:
                counterfeit_tokens.append({
                    'token': token,
                    'scam_score': scam_score,
                    'similar_tokens': similarity_scores
                })
        
        return counterfeit_tokens
    
    def calculate_similarity_scores(self, target_token, token_list):
        """Calculate similarity between target token and all others"""
        scores = {}
        for token in token_list:
            if token != target_token:
                name_sim = self.name_similarity(target_token.name, token.name)
                symbol_sim = self.symbol_similarity(target_token.symbol, token.symbol)
                behavior_sim = self.behavior_similarity(target_token, token)
                
                total_sim = (0.4 * name_sim + 0.3 * symbol_sim + 0.3 * behavior_sim)
                scores[token.address] = total_sim
        
        return scores
    
    def name_similarity(self, name1, name2):
        """Compute name similarity using modified Levenshtein distance"""
        # Implementation details omitted for brevity
        return normalized_similarity

Nazari na Asali

Wannan bincike na Gao da sauransu wanda ya kafa hanyoyi ya wakilci ci gaba mai muhimmanci a cikin nazarin tsaron blockchain, musamman a cikin fagen da ba a yi nazari sosai ba na gano kudin karya na cryptocurrency. Ƙwararrun hanyar binciken a cikin nazarin sama da 190,000 kudin ERC-20 ya kafa sabon ma'auni don binciken tsaron blockchain na zahiri. Gano 2,117 kudin karya da ke kai hari 94% na manyan cryptocurrencies ya bayyana girman wannan barazanar da ke tasowa.

Hanyar fasaha ta nuna iyawar gane tsari mai zurfi, haɗa nazarin kama da suna tare da dabarun tattara ɗabi'a. Wannan dabarun gano nau'i-nau'i daban-daban sun yi daidai da ka'idojin tsaron cyber da aka kafa yayin da ake daidaita su ga ƙalubalen naɗaɗɗen tsarin. Sakamakon binciken na asarar kudi dala miliyan 17 ya jaddada mahimmancin tattalin arziki na gano kudin karya, kwatankwacin tsarin gano zamba na kudi na al'ada kamar yadda aka rubuta a cikin rahoton shekara-shekara na FDIC kan laifukan kudi.

Daga mahangar fasaha, amfani da binciken na nazarin zane da ma'auni na kama da juna ya ginu akan aikin tushe a cikin tsaro na hanyar sadarwa da gane abin da ba na al'ada ba. Tsarin lissafi wanda ke amfani da maki masu kama da ma'auni ($S(t_i, t_j) = \alpha \cdot S_{name} + \beta \cdot S_{symbol} + \gamma \cdot S_{behavior}$) ya nuna kyakkyawar la'akari da hanyoyin kai hari da yawa. Wannan hanyar tana da kamanceceniya ta ra'ayi tare da dabarun ma'auni na fasali da ake amfani da su a cikin tsarin gano kutsawa na tushen koyon injin, kamar yadda aka ambata a cikin IEEE Transactions on Information Forensics and Security.

Ƙayyadaddun binciken a rufe Ethereum kawai ya nuna duka aikace-aikacen sa na gaggawa da fa'idar faɗaɗawa a nan gaba. Kamar yadda aka lura a cikin rahoton Bankin don Haɗin gwiwar Ƙasa na 2020 kan kuɗin dijital, haɗin kai tsakanin sarƙoƙi zai zama mahimmanci don sa ido mai zurfi na tsaro. Hanyar binciken ta ba da tushe mai ƙarfi don faɗaɗa gano kudin karya zuwa sabbin dandamali na blockchain da tsarin kuɗin rarrabawa (DeFi).

Idan aka kwatanta da binciken gano zamba na kudi na al'ada daga cibiyoyi kamar Tarayyar Tarayya, wannan binciken ya daidaita ka'idoji da aka kafa ga halayen bayyana gaskiya da sauye-sauye na tsarin blockchain. Ikomin bin diddigin magudanan ma'amala gaba-daya yana wakiltar fa'ida mai mahimmanci akan tsarin kuɗi na al'ada, ko da yake kuma yana gabatar da sababbin ƙalubale a cikin kiyaye sirri da rage kuskuren gaskiya.

5. Aikace-aikace na Gaba

Sakamakon bincike da hanyoyin suna da muhimman tasiri ga aikace-aikacen tsaron blockchain na gaba:

  • Tsarin Gano A Lokacin Gaskiya: Haɗawa tare da musayar cryptocurrency da walat don rigakafin kudin karya
  • Kayan Aikin Bin Ka'idoji: Tsarin sa ido ta atomatik ga masu kula da kudi da hukumomin tilasta bin doka
  • Tsaro Tsakanin Sarƙoƙi: Faɗaɗa hanyoyin gano zuwa wasu dandamali na blockchain bayan Ethereum
  • Kariya ta DeFi: Aikace-aikace zuwa ka'idojin kuɗin rarrabawa don hana haɗin kudin karya
  • Haɓaka Koyon Injin: Haɗa ingantattun dabarun ML don ingantaccen gano daidai

Hanyoyin bincike na gaba sun haɗa da haɓaka ka'idojin tabbatar da kudi na daidaitacce, ƙirƙira tsarin suna na rarrabawa, da kafa ka'idojin tsaro na dandamali daban-daban. Haɗin hujjoji na sifili na iya ba da damar tabbatarwa yayin kiyaye sirri, magance damuwa game da sa ido a cikin tsarin rarrabawa.

6. Bayanan Kara Karatu

  1. Gao, B., Wang, H., Xia, P., Wu, S., Zhou, Y., Luo, X., & Tyson, G. (2020). Tracking Counterfeit Cryptocurrency End-to-end. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 4(3), 1-28.
  2. Vasek, M., & Moore, T. (2015). There's no free lunch, even using Bitcoin: Tracking the popularity and profits of Bitcoin-based scams. In Financial Cryptography and Data Security (pp. 44-61). Springer.
  3. Bartoletti, M., Carta, S., Cimoli, T., & Saia, R. (2020). Dissecting Ponzi schemes on Ethereum: identification, analysis, and impact. Future Generation Computer Systems, 102, 259-277.
  4. Chen, W., Zheng, Z., Ngai, E. C. H., Zheng, P., & Zhou, Y. (2020). Exploiting blockchain data to detect smart ponzi schemes on Ethereum. IEEE Access, 7, 37575-37586.
  5. Zhu, L., He, Q., Hong, J., & Zhou, Y. (2021). A Deep Dive into Blockchain Scams: A Case Study of Ethereum. IEEE Transactions on Dependable and Secure Computing.
  6. Federal Deposit Insurance Corporation. (2020). Annual Report on Financial Fraud Detection Systems. FDIC Publications.
  7. Bank for International Settlements. (2020). Digital Currencies and Financial Stability. BIS Quarterly Review.
  8. IEEE Transactions on Information Forensics and Security. (2019). Machine Learning Approaches to Cybersecurity. Special Issue, 14(8).